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a  b  s  t  r  a  c  t

Greigite  (Fe3S4)  is  a ferrimagnetic  iron  sulfide  that commonly  forms  as  a precursor  of  pyrite  in anoxic
environments  where  the  supply  of  reactive  Fe  outpaces  that  of  sulfide  (H2S and  HS−). Because  of  its
metastability  and  sensitivity  to  redox  changes  during  burial,  greigite  has  been  rarely  documented  in
rocks  older  than  the Cretaceous.  Here  we report  well-preserved  greigite  in carbonate  concretions  of  the
upper  Doushantuo  Formation  (ca.  551  Ma)  in  the  Yangtze  Gorge  area,  South  China.  Greigite  in  the  carbon-
ate concretions  coexists  with  anhedral  and  framboidal  pyrite,  and  is  distributed  in clay-rich  carbonates
eywords:
reigite
arbonate concretion
oushantuo Formation
diacaran

with  card-house  microtextures  and  dolomitic  spherical  structures  indicative  of  early  diagenetic  forma-
tion during  shallow  burial.  Preservation  of  greigite  in  carbonate  concretions  of  the  upper  Doushantuo
Formation  implies  that these  concretions  maintained  a closed  micro-system  since  their  formation  and
that they  provide  information  about  the  ancient  depositional  and  early  diagenetic  environments.
outh China
arly diagenesis

. Introduction

Greigite is a ferrimagnetic iron sulfide mineral that has a sim-
lar spinel crystal structure to magnetite (Skinner et al., 1964). It
sually forms as a metastable precursor of pyrite in anoxic sedi-
entary environments where dissolved iron provided by reduction

f reactive iron oxides outpaces sulfide supply (Karlin and Levi,
983; Berner, 1984; Canfield and Berner, 1987; Karlin, 1990a,b;
ao et al., 2004). Because of its ferrimagnetic attributes, greigite has
een widely documented in paleomagnetic and paleoenvironmen-
al studies (e.g. Snowball and Thompson, 1988; Snowball, 1991;
oberts and Turner, 1993; Florindo and Sagnotti, 1995; Horng et al.,
998; Jiang et al., 2001; Roberts et al., 2005; Rowan and Roberts,
005, 2006, 2008; Sagnotti et al., 2005). In Cenozoic successions,
reigite has been found in a wide range of depositional environ-
ents, such as estuaries and deep-sea fans (Kasten et al., 1998),

emipelagic deposits on continental shelves and deep-water basins
Berner, 1984; Horng et al., 1992; Lee and Jin, 1995; Sagnotti and
inkler, 1999; Oda and Torri, 2004), and gas hydrate systems
Housen and Musgrave, 1996; Larrasoaña et al., 2007). However,
ecause greigite can be poorly crystalline and sensitive to redox

∗ Corresponding author at: China University of Geosciences, Beijing, 29 Xueyuan
oad, Haidian, Beijing 100083, PR China. Tel.: +86 10 82322257;
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E-mail address: shzhang@cugb.edu.cn (S. Zhang).

301-9268/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.precamres.2012.03.010
© 2012 Elsevier B.V. All rights reserved.

changes and to elevated temperatures during deeper burial, its
preservation and identification in old sedimentary successions is
often difficult.

It has been inferred that greigite was part of an iron monosul-
fide membrane that served as a catalyst between fluids in a Hadean
submarine hydrothermal redox front that may have enabled emer-
gence of life on Earth (Russell et al., 1994; Russell and Hall, 1997),
but either such early greigite has not been preserved in the geo-
logical record or it has not been discovered. The oldest strata
reported to host hydrothermal greigite within siderite nodules are
of Permo-Carboniferous age (Krupp, 1991, 1994). In this case, the
preservation of greigite suggested that siderite nodules could pro-
vide protection from later oxidation (Krupp, 1994). Greigite has also
been reported from Cretaceous strata of northern Alaska (Reynolds
et al., 1994) and Peru (Linder and Gilder, 2011), but some of those
reported greigites might have formed during late diagenesis, much
younger than Cretaceous.

In this paper, we report the occurrence of greigite in carbon-
ate concretions of the Ediacaran Doushantuo Formation in South
China. These carbonate concretions are hosted in the black shales
of the uppermost Doushantuo Formation that has been dated at
ca. 551 Ma (Condon et al., 2005; Zhang et al., 2005). If the greigite
in these concretions were formed close to the time of deposi-

tion, this would be the oldest documented occurrence of greigite
in the geological record. We  test this possibility and the poten-
tial paleoenvironmental information that can be provided by the
occurrence of greigite.

dx.doi.org/10.1016/j.precamres.2012.03.010
http://www.sciencedirect.com/science/journal/03019268
http://www.elsevier.com/locate/precamres
mailto:shzhang@cugb.edu.cn
dx.doi.org/10.1016/j.precamres.2012.03.010
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Fig. 1. (A) Simplified geological map  of the Yangtze Gorge area (after Zhang et al., 2005) with location of the studied section (closed triangle). (B) Stratigraphic column of the
Doushantuo Formation (after Jiang et al., 2007). (C and D) Field photographs of concretions (Camera lens cap in C and D is 65 mm across).
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. Geological background

The study sections are located in the Yangtze Gorge area of
ubei province (Fig. 1A). The Neoproterozoic strata in this area
nconformably overlie the ca. 820 Ma  Huangling Granite and are
omposed of three parts: pre-Cryogenian (>725 Ma;  Zhang et al.,
008a) siliciclastic rocks (Liantuo Formation), Cryogenian glacio-
enic Nantuo Formation (∼654–635 Ma,  Zhang et al., 2008b, 2008c),
nd Ediacaran carbonate and shale (Doushantuo and Dengying
ormations). The Liantuo and Nantuo formations and their equiva-
ent strata in South China are well dated and are thought to have
een deposited in fluvial to shallow-marine environments of a
outheast-facing rift margin, while the Ediacaran strata may  rep-
esent deposits of a passive continental margin (Jiang et al., 2003a;

ang and Li, 2003).
Lithologically, the Doushantuo Formation in this area can be
ivided into four members (Zhu et al., 2003, 2007; Jiang et al., 2011)
Fig. 1B). The lowest member is the 3- to 6-m-thick “Doushantuo
ap carbonate” (Jiang et al., 2003b, 2006a,b) that marks the base of

ig. 2. Optical microscope and SEM images of concretions and host rocks. (A and B) Opt
tched  with dilute hydrochloric acid, with house of card fabrics. (E and F) SEM images o
ashed frame in (A). Ms, dolomite spar; C, clay; Qz, quartz; FF, face-to-face contact (of cla
earch 225 (2013) 77– 85 79

the Ediacaran Period (Knoll et al., 2004) in South China and has been
dated at 635.2 ± 0.6 Ma  (Condon et al., 2005; Zhang et al., 2005). The
second member consists of an up to 70-m-thick, interbedded black
shale and shaley limestone with abundant pea-sized phosphorite-
chert nodules. The third member is composed of ∼70-m-thick, gray
to dark dolomite and dolomitic limestone. In these two members,
macroscopic animal embryo fossils, large acanthomorph acritarchs,
and multicellular algae have been found (Zhang et al., 1998; Xiao,
2004; Yin et al., 2007; Zhou et al., 2007; McFadden et al., 2008, 2009;
Liu et al., 2009). The fourth member consists of a 10-m-thick black
shale that contains abundant carbonate concretions, which is the
focus of this study. Macroscopic algae and putative animal fossils
named as the Miaohe biota were found in this member (Ding et al.,
1996; Zhang et al., 1998; Xiao et al., 2002). A volcanic ash bed near
the top of this member yielded a U–Pb zircon age of 551 ± 0.7 Ma
(Condon et al., 2005; Zhang et al., 2005).
Carbonate concretions in this fourth member of the Doushan-
tuo Formation are usually isolated (Fig. 1C), but in some cases they
align along the bedding plane (Fig. 1D). The hosting shale contains

ical microscope images of concretions. (C and D) SEM images of concretion lightly
f host rocks with preferred alignment of clays. (B) is a magnified image from the
y); EF, edge-to-face contact; EE, edge-to-edge contact; SS: spherical texture.
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ig. 3. Representative back-scattered electron images of pyrite in the concretions. (
rystals. (E and F) Anhedral pyrite, with many voids on its surface. Bright areas are 

 clear foliation, while the concretions are usually massive with
aint parallel laminations. Most of the carbonate concretions are
pherical, with a small portion being ellipsoidal (Fig. 1C), oblate
Fig. 1D) or irregular. The size of these concretions varies generally
rom 0.1 to 0.5 m in diameter, with occasionally smaller or larger
izes. The boundaries between the host rock and concretions are
istinct. Near the top of the Doushantuo Formation, a few horizons
ontain large layer-parallel concretions, some of which have clear
edimentary laminations. The host-rock bedding bends around the
oncretions, which indicates that the concretions formed before
eep compaction (Fig. 1C).

. Methods

Samples were collected from both concretions and host shales.
heir mineral composition and microtextures were investigated

sing Scanning Electron Microscope (SEM), X-ray diffraction
XRD) and optical microscope observations. The SEM analyses
ere carried out at two laboratories: (1) A Hitachi S-3400N SEM,

perated at 20 keV, equipped with a Link Analytical Oxford IE 350
 B) Anhedral and aggregated. (C and D) Pyrite aggregate, with cubic and octahedral
 or greigite and dark areas are background minerals, such as dolomite and quartz.

for X-ray energy-dispersive spectrometer (EDS) analysis at the
State Key Laboratory of Geological Process and Mineral Resources,
China University of Geosciences, Beijing (Lab CUGB) and, (2) A Zeiss
Supra 55 VP SEM, operated at 20 keV, with an EDS of Thermo Fisher
Scientific Noran System six, at State Key Laboratory for Advanced
Metals and Materials, University of Science and Technology Beijing
(Lab USTB). Samples were coated with a thin layer of carbon
to prevent charging. Iron sulfide minerals were identified using
SEM and EDS on the basis of their chemical composition, high
electron backscatter and microtextures (e.g., Jiang et al., 2001;
Sagnotti et al., 2005; Weaver et al., 2002; Roberts et al., 2005).
XRD measurements were carried out at the Institute of Petroleum
Exploration and Development, PetroChina, Beijing.

4. Results
4.1. Mineral analyses

Mineral analyses demonstrate that the minerals in the host
rocks of concretions are mostly quartz (∼36%) and clay (∼41%), with
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F
s
a

J. Dong et al. / Precambri

inor amounts of K-feldspar (∼4.2%), calcite (∼3.6%), dolomite
∼6.5%), and pyrite (∼3.6%). The concretions are dominated by
olomite (∼91%), with minor quartz (∼2.6%), clay (∼2.8%), and
-feldspar (∼0.2%). Although the absolute mineral concentra-

ions in the concretions differ from those of the host shales,
he similarities of the type and proportion of detrital minerals
n concretions and shales suggest that the concretions formed
y authigenic carbonate cementation of detrital materials during
arly diagenesis (Dong et al., 2008). It should be noted that nei-
her greigite nor pyrite could be identified using XRD because
he percentage of greigite and pyrite is below the detection
imit of the XRD in both concretions and host shales. EDS anal-
sis shows that the dolomite only contained Ca, Mg,  C and O
ut no Fe, which indicates that the carbonate cement is not
iderite.
ig. 4. (a) Representative back-scattered electron images (A, C and E) and EDS spectra (B
hows  EDS analysis spot (all conducted at Lab CUGB, see text). (b) Representative back-s
nalyzed at Lab CUGB; C, D, E and F were analyzed at Lab USTB.
earch 225 (2013) 77– 85 81

4.2. Microscope observations

Under the optical microscope, the most distinctive feature of
the carbonate concretions is their spherical texture, which covers
80% of the fields of view (Fig. 2A and B). The spherical textures
are about 100–200 �m across and are uniformly distributed in the
concretions. They display similar features in orthogonal thin sec-
tions. Dolomite microspars with clear rhombic shape grow toward
the center of the spheres, commonly forming an isopachous layer
along the edge of the spheres. This texture is inferred to have been
produced by carbonate-filled gas bubbles, which formed during
, D and F) of pyrite and greigite in the studied carbonate concretions. White circle
cattered SEM images and EDS spectra of greigite in the concretions, A and B were
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Fig. 4. 

ave helped to maintain a closed system in carbonate concretions
hat prevented further chemical exchange between concretions
nd formation fluids (Raiswell, 1982; Raiswell and Fisher, 2000).

.3. SEM observations

SEM observations indicate that the clay minerals are arranged
andomly in the concretions with edge to face (EF), edge to edge
EE), and face to face (FF) modes of contact, which form a card-
ouse fabric (Fig. 2C and D). This texture is common in modern
lay-rich sediments (Zabawa, 1978; Woodland, 1984). The card-
ouse clay fabric can be easily destroyed by compaction and
xists only in the uppermost 0–3 m of sediments (Raiswell, 1976;
oodland, 1984). The well-preserved card-house fabric in the con-

retions indicates that these concretions formed before compaction
nd that carbonate cementation protected them from deformation
uring subsequent burial. This is consistent with field observa-
ions that the host-rock bedding bends around the concretions
Fig. 1C).
Several types of pyrite are observed under SEM in concretions
nd host rocks, including euhedral, anhedral and aggregate forms.
nhedral pyrite is the most common type in both concretions and
ost rocks (Fig. 3A and B), followed by pyrite aggregates, which are
inued )

composed of crystals that are mostly cubic or octahedral in shape
and about 0.1–1 �m in size (Fig. 3C and D). The pyrite aggregates are
irregular in shape and do not display multiple growth generations.
Anhedral pyrites are about 100–150 �m in size and have abundant,
0.1- to 1.5-�m-sized voids (Fig. 3E and F) on their surface, which
are inferred to be relics left by organic matter decay or clay mineral
decomposition (Fig. 3E and F). Pyrites are distributed in carbonate
inter-crystal space or embedded in dolomite crystals. Their shapes
are commonly influenced by the shape of dolomite. These features
suggest that precipitation of pyrite was roughly synchronous with
that of the dolomite.

Greigite is identified by crystal shape and distinctive chemical
composition. Greigite (43% Fe:57% S) has a higher iron to sulfur ratio
compared to pyrite (33% Fe:67% S), which makes it easy to identify
using EDS analysis. Although monoclinic pyrrhotite (Fe7S8) (47%
Fe:53% S) has a similar iron to sulfur ratio as greigite, these two
phases usually have distinct morphologies. Pyrrhotite is typically
platy, while greigite occurs as cubo-octahedral crystals (Roberts
and Weaver, 2005). Greigite is dispersed in framboidal pyrite aggre-

gates and anhedral pyrite (Fig. 4a and b). Compared to pyrite,
greigite normally has brighter contrast due to its higher iron to
sulfur ratio (Hoffmann, 1992). In some cases, however, greigite can
also have slightly darker contrast because of its irregular scattering
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ig. 5. Schematic geochemical classification scheme for modern marine sedime
oushantuo concretions and greigite. SP, SD and MD indicate superparamagnetic, s

urface and intergrowth of crystals (Jiang et al., 2001; Roberts and
eaver, 2005).
At Lab CUGB, the EDS of Hitachi S-3400N SEM may  experience

lemental interference from matrix or other minerals when ana-
yzing small (<1 �m)  greigites, so trace of other elements, such as
a and O, could be captured in the EDS spectra (Fig. 4a and bB).

n addition, some O might come from oxidation, too. In order to
inimize such interferences, we observed fresh sample cuts and

robed as many points as possible for statistical confirmation. Ele-
ental analyses showed two distinctive, narrow iron peaks from

ron sulfide minerals. One peak has iron content of 32–35%, which
s consistent with pyrite; and the other has iron contents of 41–45%,
onsistent with greigite. The narrow iron peaks indicate that oxi-
ation of iron sulfide is negligible, otherwise Fe/S ratios would be
ore scattered.

. Discussion

Studies of modern organic-rich marine sediments indicate that,
elow the water–sediment interface, the sedimentary column can
e divided into several diagenetic zones according to the reactants
nd products. Organic matter is oxidized through a progression of
xidants that produced a dissolved oxygen zone, a nitrate reduction
one, a manganese reduction zone, an iron reduction zone, a sulfate
eduction zone and a methanogenesis zone (Fig. 5) (Berner, 1981;
oberts and Weaver, 2005).

According to conventional views of steady-state diagenesis, iron
ulfide usually forms during early diagenesis at shallow burial
epths, where detrital iron-bearing minerals react with hydrogen
ulfide (H2S) to produce pyrite (Karlin and Levi, 1983; Canfield and
erner, 1987; Karlin, 1990a,b). Greigite is an intermediate phase in
his reaction (Berner, 1984; Wilkin and Barnes, 1997; Hunger and
enning, 2007) and its preservation is favored by high concentra-
ions of reactive iron and low concentrations of organic carbon and

2S (Kao et al., 2004). Rowan et al. (2009) demonstrated that greig-

te growth begins with nucleation of nanoparticles at the inferred
osition of the sulfate–methane transition and these nanoparticles
rogressively grow through the magnetic single-domain volume.
environments (adapted from Berner, 1981) and possible growth model for the
domain and multi-domain magnetic minerals (from Rowan et al., 2009).

This process is evident in several published records concerning the
magnetic properties of greigite-bearing sediments (Karlin, 1990a;
Tarduno, 1995; Yamazaki et al., 2003; Liu et al., 2004; Garming
et al., 2005; Dillon and Bleil, 2006) and may be widespread in
reducing sedimentary environments. Dissolved sulfide is normally
completely consumed deeper in the sediment column (Berner,
1981; Kasten et al., 1998; Roberts and Weaver, 2005), so greigite
should most commonly form in a brief period after deposition (e.g.,
Pye, 1981; Reynolds et al., 1999).

Greigite can also form during late diagenesis, which compli-
cates studies of environmental magnetism and geomagnetic field
behavior (e.g., Horng et al., 1998; Jiang et al., 2001; Roberts et al.,
2005; Sagnotti et al., 2005; Rowan and Roberts, 2005, 2006, 2008).
In the Doushantuo concretions, greigite and pyrite are distributed
in dolomite inter-crystal space or embedded in dolomite crystals,
which indicates that iron sulfides were precipitated roughly syn-
chronously with dolomite formation. This raises question about
the timing of greigite formation relative to the deposition of the
Doushantuo Member IV shales. Dolomite, although abundant in the
ancient rock record, is rarely found as primary carbonate precipitate
in modern natural environments, which is known as the ‘dolomite
problem’ (e.g., McKenzie, 1991). If the dolomite in the shale-hosted
carbonate concretions was formed later in the diagenetic history,
the pyrite and gregite closely associated with the dolomite may
have also formed during late diagenesis. Laboratory experiments,
however, have indicated that dolomite could form at low temper-
atures with sulfate-reducing bacterial involvement (Vasconcelos
et al., 1995; Vasconcelos and McKenzie, 1997). Microbially medi-
ated dolomite formation has been found in modern coastal lagoons
(Vasconcelos and McKenzie, 1997) and in groundwater (Roberts
et al., 2004). More recent finding of dolomite biomineralization in
living coralline algae (Nash et al., 2011) also indicates that biolog-
ically initiated dolomite could be an important source of primary
dolomite. Although the ‘dolomite problem’ in general is not fully
solved, we  believe that the dolomite (and greigite) in the Doushan-

tuo concretions were formed during early diagenesis within the
sulfate-reducing zone. This is consistent with the well-preserved
card-house clay fabrics and spherical dolomite textures in the con-
cretions, which indicate that the concretions were formed at very
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hallow burial depth. The lack of iron in dolomite crystals suggests
hat dolomite and iron sulfides were formed in H2S-rich microen-
ironment where iron was preferentially incorporated into sulfides
ather than carbonate (e.g., the formation of siderite). Bicarbonate
HCO3

−) required for dolomite precipitation could be produced in
ll diagenetic zones. In the nitrate, manganese and iron reduction
ones, only minor amounts of HCO3

− are produced so the concre-
ion would have been in the nucleation stage only, while in the
ulfate reduction zone, anaerobic organic carbon oxidation could
enerate significant amounts of HCO3

−; this is generally considered
s the major stage of carbonate concretionary growth (Raiswell,
987, 1988; Lash and Blood, 2004; Hendry et al., 2006). At this stage,
he generation of dissolved sulfide through sulfate reduction also
romotes iron sulfide formation (Berner, 1984).

The preservation of greigite and card-house clay fabric in the
oncretions but not in the host shales suggests that the concre-
ions served as a protecting armor for the minerals and textures
uring subsequent burial and diagenesis. Authigenic carbonate
ementation created closed micro-systems so that formation flu-
ds during burial were excluded from these concretions and further
hemical reactions within the carbonate concretions were minimal
Raiswell, 1982; Raiswell and Fisher, 2000). In this considera-
ion, the greigite from the Doushantuo concretions should have

 potential for obtaining useful paleomagnetic information. How-
ver, caution should be taken not only because greigite has low
nblock temperature (Roberts, 1995; Dekkers et al., 2000; Chang
t al., 2008), but also because a reliable paleomagnetic pole requires
obust field tests as well. Unfortunately, the Doushantuo For-
ation across the Yangtze platform has so far never passed a

eversals test.

. Conclusions

Using SEM and EDS analyses, greigite has been identified
rom carbonate concretions of the uppermost Doushantuo Forma-
ion (ca. 551 Ma). The association of greigite with well-preserved
ard-house clay fabric and spherical dolomite texture in these con-
retions indicates early diagenetic formation within the sulfate
eduction zone. Authigenic carbonate cementation in these con-
retions created closed micro-systems that served as protecting
rmor for the minerals and textures during subsequent burial and
iagenesis.

The presence of greigite in Precambrian concretions may  have
mplications for paleoenvironmental and paleomagnetic studies.
irst, its occurrence confirms that greigite can persist for long geo-
ogical periods, at least under special conditions such as within
oncretions. Second, the close association of greigite and clay
icrofabrics suggests formation during early diagenesis before

ompaction. The composition of pore fluids at that stage may  have
een close to that of seawater. Third, the presence of greigite may
rovide a reference for paleomagnetic studies. Primary greigite is
sually formed within 2000 years after deposition (e.g. Pye, 1981;
anfield and Berner, 1987; Reynolds et al., 1999) and this time lag
ould be negligible compared to its subsequent geological history.
f greigite in such environments can be demonstrated to have an
arly origin and carries a primary magnetization, paleomagnetic
nalysis of such rocks could be very useful.
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